Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Chem Biol Interact ; 394: 110989, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574836

RESUMO

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.

2.
Acta Neuropathol Commun ; 12(1): 56, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589905

RESUMO

In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.


Assuntos
Adenina/análogos & derivados , Antineoplásicos , Doxorrubicina/análogos & derivados , Glioma , Piperidinas , Ratos , Animais , Roedores , Glioma/patologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/patologia , Polietilenoglicóis
3.
Fluids Barriers CNS ; 21(1): 27, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491505

RESUMO

BACKGROUND: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Peixe-Zebra , Adulto , Animais , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Mamíferos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peixe-Zebra/metabolismo
4.
Adv Sci (Weinh) ; : e2302872, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445882

RESUMO

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.

5.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37425689

RESUMO

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. Methods: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. Results: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. Conclusions: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for the studying the role of ABCG2 at the BBB.

6.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37786680

RESUMO

Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights: Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.

7.
Drug Resist Updat ; 72: 101035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141369

RESUMO

Zebrafish have proved to be invaluable for modeling complex physiological processes shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, ABCG2, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of cytotoxic drugs at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, cellular localization, and function of zebrafish orthologs of multidrug resistance ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.


Assuntos
Antineoplásicos , Neoplasias , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos/genética , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151817

RESUMO

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Zinco
9.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38076968

RESUMO

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7% and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170 and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.

10.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37986908

RESUMO

ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.

11.
Cancers (Basel) ; 15(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894327

RESUMO

BACKGROUND: Over the last few decades of treatment, the outcomes for at least some subsets of neuroendocrine neoplasms (NENs) have improved. However, the identification of new vulnerabilities for this heterogeneous group of cancers remains a priority. METHODS: Using two libraries of compounds selected for potential repurposing, we identified the inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylases (HDAC) as the agents with the highest activity. We validated the hits in an expanded set of neuroendocrine cell lines and examined the mechanisms of action. RESULTS: In Kelly, NH-6, and NCI-H82, which are two neuroblastoma and one small cell lung cancer cell lines, respectively, metabolic studies suggested that cell death following NAMPT inhibition is the result of a reduction in basal oxidative phosphorylation and energy production. NAMPT is the rate-limiting enzyme in the production of NAD+, and in the three cell lines, NAMPT inhibition led to a marked reduction in the ATP and NAD+ levels and the catalytic activity of the citric acid cycle. Moreover, comparative analysis of the mRNA expression in drug-sensitive and -insensitive cell lines found less dependency of the latter on oxidative phosphorylation for their energy requirement. Further, the analysis of HDAC and NAMPT inhibitors administered in combination found marked activity using low sub-lethal concentrations of both agents, suggesting a synergistic effect. CONCLUSION: These data suggest NAMPT inhibitors alone or in combination with HDAC inhibitors could be particularly effective in the treatment of neuroendocrine neoplasms.

12.
Cancer Drug Resist ; 6(6): 468-480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840856

RESUMO

Aim: Ferroptosis is a non-apoptotic form of cell death caused by lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. We thus sought to characterize the interactions of FINs with P-gp and ABCG2, which may provide information regarding oral bioavailability and brain penetration and predict drug-drug interactions. Methods: Cytotoxicity assays with ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2 were used to determine the ability of the transporters to confer resistance to FINs; confirmatory studies were performed in OVCAR8 and NCI/ADR-RES cells. The ability of FINs to inhibit P-gp or ABCG2 was determined using the fluorescent substrates rhodamine 123 or purpuin-18, respectively. Results: P-gp overexpression conferred resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. The FINs ML-162, GPX inhibitor 26a, and PACMA31 at 10 µM were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells. GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Conclusion: Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.

13.
Cancer Drug Resist ; 6(3): 590-595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842242

RESUMO

Cancer Drug Resistance publishes contributions to understanding the biology and consequences of mechanisms that interfere with successful treatment of cancer. Since virtually all patients who die of metastatic cancer have multidrug-resistant tumors, improved treatment will require an understanding of the mechanisms of resistance to design therapies that circumvent these mechanisms, exploit these mechanisms, or inactivate these multidrug resistance mechanisms. One example of a resistance mechanism is the expression of ATP-binding cassette efflux pumps, but unfortunately, inhibition of these transporters has not proved to be the solution to overcome multidrug resistance in cancer. Other mechanisms that confer multidrug resistance, and the confluence of multiple different mechanisms (multifactorial multidrug resistance) have been identified, and it is the goal of this Special Collection to expand this catalog of potential multidrug resistance mechanisms, to explore novel ways to overcome resistance, and to present thoughtful reviews on the problem of multidrug resistance in cancer.

14.
Neurooncol Adv ; 5(1): vdad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706203

RESUMO

Background: Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods: Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results: We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions: Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.

15.
Cancer Gene Ther ; 30(8): 1043-1050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029320

RESUMO

Despite the development of new classes of targeted anti-cancer drugs, the curative treatment of metastatic solid tumors remains out of reach owing to the development of resistance to current chemotherapeutics. Although many mechanisms of drug resistance have been described, there is still a general lack of understanding of the many means by which cancer cells elude otherwise effective chemotherapy. The traditional strategy of isolating resistant clones in vitro, defining their mechanism of resistance, and testing to see whether these mechanisms play a role in clinical drug resistance is time-consuming and in many cases falls short of providing clinically relevant information. In this review, we summarize the use of CRISPR technology, including the promise and pitfalls, to generate libraries of cancer cells carrying sgRNAs that define novel mechanisms of resistance. The existing strategies using CRISPR knockout, activation, and inhibition screens, and combinations of these approaches are described. In addition, specialized approaches to identify more than one gene that may be contributing to resistance, as occurs in synthetic lethality, are described. Although these CRISPR-based approaches to cataloguing drug resistance genes in cancer cells are just beginning to be utilized, appropriately used they promise to accelerate understanding of drug resistance in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , RNA Guia de Sistemas CRISPR-Cas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Sistemas CRISPR-Cas/genética
16.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945397

RESUMO

Ferroptosis is a form of cell death caused by direct or indirect inhibition of glutathione peroxidase 4 that leads to lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding resistance mechanisms, particularly their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. Given the role that ABC transporters play in absorption, distribution, and excretion of many drugs, characterizing these interactions could provide information regarding oral bioavailability and brain penetration and may predict drug-drug interactions. Using ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2, we found that P-gp overexpression was able to confer resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. Results were confirmed with OVCAR8-derived NCI/ADR-RES cells that overexpress P-gp, where the P-gp inhibitor valspodar completely inhibited resistance to the FINs. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. At a concentration of 10 µM, the FINs ML-162, GPX inhibitor 26a, and PACMA31 were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells and GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.

17.
Clin Cancer Res ; 29(2): 472-487, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322002

RESUMO

PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.


Assuntos
Rabdomiossarcoma , Humanos , Animais , Camundongos , Criança , Linhagem Celular Tumoral , Camundongos SCID , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
18.
Cancers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681624

RESUMO

BACKGROUND: The mechanism of action of romidepsin and other histone deacetylase inhibitors is still not fully explained. Our goal was to gain a mechanistic understanding of the RAS-linked phenotype associated with romidepsin sensitivity. METHODS: The NCI60 dataset was screened for molecular clues to romidepsin sensitivity. Histone acetylation, DNA damage, ROS production, metabolic state (real-time measurement and metabolomics), and gene expression alterations (transcriptomics) were determined in KRAS-WT versus KRAS-mutant cell groups. The search for biomarkers in response to HDACi was implemented by supervised machine learning analysis on a 608-cell transcriptomic dataset and validated in a clinical dataset. RESULTS: Romidepsin treatment induced depletion in acetyl-CoA in all tested cell lines, which led to oxidative stress, metabolic stress, and increased death-particularly in KRAS-mutant cell lines. Romidepsin-induced stresses and death were rescued by acetyl-CoA replenishment. Two acetyl-CoA gene expression signatures associated with HDACi sensitivity were derived from machine learning analysis in the CCLE (Cancer Cell Line Encyclopedia) cell panel. Signatures were then validated in the training cohort for seven HDACi, and in an independent 13-patient cohort treated with belinostat. CONCLUSIONS: Our study reveals the importance of acetyl-CoA metabolism in HDAC sensitivity, and it highlights acetyl-CoA generation pathways as potential targets to combine with HDACi.

19.
Chem Biol Interact ; 351: 109718, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34717915

RESUMO

The ABCG2 transporter plays a pivotal role in multidrug resistance, however, no clinical trial using specific ABCG2 inhibitors have been successful. Although ABC transporters actively extrude a wide variety of substrates, photodynamic therapeutic agents with porphyrinic scaffolds are exclusively transported by ABCG2. In this work, we describe for the first time a porphyrin derivative (4B) inhibitor of ABCG2 and capable to overcome multidrug resistance in vitro. The inhibition was time-dependent and 4B was not itself transported by ABCG2. Independently of the substrate, the porphyrin 4B showed an IC50 value of 1.6 µM and a mixed type of inhibition. This compound inhibited the ATPase activity and increased the binding of the conformational-sensitive antibody 5D3. A thermostability assay confirmed allosteric protein changes triggered by the porphyrin. Long-timescale molecular dynamics simulations revealed a different behavior between the ABCG2 porphyrinic substrate pheophorbide a and the porphyrin 4B. Pheophorbide a was able to bind in three different protein sites but 4B showed one binding conformation with a strong ionic interaction with GLU446. The inhibition was selective toward ABCG2, since no inhibition was observed for P-glycoprotein and MRP1. Finally, this compound successfully chemosensitized cells that overexpress ABCG2. These findings reinforce that substrates may be a privileged source of chemical scaffolds for identification of new inhibitors of multidrug resistance-linked ABC transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Porfirinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Irinotecano/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos
20.
Sci Rep ; 11(1): 24150, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921178

RESUMO

Capillary endothelial cells of the human blood-brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5. When stably expressed in HEK293 cells, both Abcb4 and Abcb5 conferred resistance to P-gp substrates; however, Abcb5 poorly transported doxorubicin and mitoxantrone compared to zebrafish Abcb4. Additionally, Abcb5 did not transport the fluorescent P-gp probes BODIPY-ethylenediamine or LDS 751, while they were transported by Abcb4. High-throughput screening of 90 human P-gp substrates confirmed that Abcb4 has an overlapping substrate specificity profile with P-gp. In the brain vasculature, RNAscope probes for abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. The abcb4 probe also colocalized with claudin-5 in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, potentially indicating different functions. The data suggest that zebrafish Abcb4 functionally phenocopies P-gp and that the zebrafish may serve as a model to study the role of P-gp at the BBB.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico Ativo , Células HEK293 , Humanos , Especificidade de Órgãos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...